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Notations and formulation were adapted from Jon Schlens’s tutorial [1]. Please refer to
the original tutorial for detailed explanation and illustration examples. This note mainly
focuses on different optimization algorithms used to maximize source independence and their
complex-valued variants. The algorithm scripts will also be provided in the same Github
repo. For the following contents, the first session briefly summarized the key assumptions
and pre-processing of ICA (i.e. data whitening). The second session listed some popular
algorithms used to maximize source independence. I also summarized their approximate
objective functions, approximation assumptions for finite sampling issues and whether they
are convex or not. The third session described complex-valued random variables and the
application of ICA to complex-valued signals.

1 ICA formulation

1.1 Problem setup

ICA was designed to solve blind source separation (BSS) problem. It assumes that the
observed signals x ∈ RN×1 is a linear combination of independent source signals s ∈
RN×1:

x = As, ŝ = Wx (1)

where A is the mixing matrix and W is the demixing matrix. Often, we assume A is an
invertible square matrix then W = A−1. This is an under-constrained problem and the goal
is to find a set of solutions (̂s,W) such that the elements of ŝ are as independent as possible.

1.2 Data whitening

To solve ICA, we consider the diagonalization of the covariance matrix 〈xxT 〉. On one hand,
from the data generation assumption and assume source distribution is whitened

〈xxT 〉 = 〈(As)(As)T )〉 = A〈ssT 〉AT = AAT = UΣ2U
T

(2)

The last equation was obtained after considering the SVD decomposition of A = UΣVT .
On the other hand, the covariance matrix could be estimated through the sample covariance
matrix of observed samples. Then apply eigenvalue decomposition of the calculated sample
covariance matrix:

〈xxT 〉 = EDET (3)

By the uniqueness of diagonalization, Σ = D
1
2 and U = E.

Inverting A, we arrived at the partial solution of W:

W = VD− 1
2 ET (4)

Then the estimated source can be written as:

ŝ = VD− 1
2 ETx = Vxw (5)
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One way to evaluate independence is to calculate the mutual information or multi-information
for multiple sources. From information theory, multiple information could also be calculated
as the difference between marginal entropy sum and the entropy of joint distribution:

I(̂s) =
∑
i

H[(Vxw)i]−H[Vxw] =
∑
i

H[(Vxw)i]− (H[xw] + log2 |V|) (6)

Then it becomes an optimization problem under the constrain that V is a unitary matrix.

V = arg min
V

∑
i

H[(Vxw)i] (7)

There are a bunch of algorithms approximating the above entropy terms from finite samples.
A typical example is FastICA. Infomax however adopts a slightly different objective function
and optimizes through a self-organized network. All described in the next session.

2 Optimizing for statistical independence

After whitening, the ICA problem could be formulated as finding a rotation matrix (i.e.
unitary matrix) V such that ŝ, as the matrix product of V and whitened observation data
xw, is as independent as possible.

Definition. Random vector s is independent given its joint probability could be factored
into the product of its marginal distributions:

P(s) =
∏
i

P(si) (8)

Then various algorithms differs in how to describe independence through high-order statistics
and the approximation of p.d.f. I briefly summarized them in the following table and then
introduced the assumptions one by one.

Algorithm High-order statistics Objective function Algorithm Script
Infomax Mutual information max joint entropy of ŝ Self-organizing net runica.m
FastICA negentropy/non-Gaussianity contrast functions fixed-point iteration fastica.m

2.1 Infomax algorithm

Infomax [2] is an algorithm to maximize the mutual information between input x and output
ŝ of a nonlinear neural network ŝ = g(Wx). For invertible continuous deterministic mappings
(i.e. invertible g and W), maximization of input-output mutual information is equivalent to
minimization of the output joint entropy alone. So given the output joint entropy as objective
function, the network weights W could be adjusted through a self-organized learning rule
derived through gradient ascent:

arg max
W

H (̂s) (9)
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Then to apply infomax to ICA problem. Notice the relationship between mutual infor-
mation and joint entropy:

I(̂s) =
∑
i

H (̂si)−H (̂s) (10)

Let apart the influence of marginal entropies (which is the caveat of this algo-
rithm),

Ŵ = arg max
W

H (̂s) = arg min
W

I(̂s) (11)

Note that for an one-to-one nonlinear transformation applied to a random variable, its p.d.f.
or entropy remain the same up to a constant scale. Therefore the influence of introducing
the nonlinear function g is trivial.

2.2 FastICA

This algorithm [3] starts from differential entropy (different from discrete-version entropy
H): h(y) = −

∫
f(y)(y)dy. Negentropy (J) is a normalized version of differential entropy

which is invariant for linear transformations:

J(y) = h(ygauss)− h(y) (12)

where ygauss is a Gaussian random variable of the same covariance matrix as y. Through ne-
gentropy, constraining the variables to be uncorrelated, we could express mutual information
as:

I(y) = J(y)−
∑
i

J(yi) (13)

Then minimizing mutual information is roughly equivalent to finding directions
in which the negentropy is maximized, given the joint p.d.f. is fixed. Note that FastICA
focuses on mariginal p.d.f’s while infomax focuses on the joint p.d.f.

Negentropy was approximated using the following general quadratic form, it has been
shown to be more accurate than the conventional, cumulant-based approximations.

J(yi) ' c[E{G(yi)} − E{G(ν)}]2 (14)

where G is any quadratic function, c is a constant, ν is a standard Gaussian random variable.
Then if we try to find the independent components wi (i.e. rows of W) one by one, the
objective function is defined as:

maximize
∑
i

[E{G(wi
Tx)} − E{G(ν)}]2 w.r.t.wi

under constraint E{(wk
Tx)(wj

Tx)} = δjk

(15)

The choice of the quadratic function was discussed in the original publication [3]. The
optimization was implemented through the stabilized fixed-point algorithm derived through
Kuhn-Tucker conditions and the approximate Newton iteration.
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2.3

3 Complex-valued ICA

3.1 Complex-valued random vectors

For a complex-valued random vector z ∈ CN×1, its p.d.f is determined by the p.d.f of a
real-valued 2N × 1 random vector (zR, zI)

T . The first order statistics is given by:

E(z) = E(zR) + jE(zI) (16)

The second order statistics were given by cov(zR), cov(zI) and cross covariance between zR
and zI . Therefore, the full description of second-order statistics needs both the real-valued
covariance matrix cov(z) and the complex-valued pseudo-covariance matrix pcov(z):

cov(z) = Ez[(z− Ez(z))(z− Ez(z))H ]

pcov(z) = Ez[(z− Ez(z))(z− Ez(z))T ]
(17)

A complex random variable z is called circular if for any deterministic φ ∈ [−π, π], the
distribution of ejφz equals the distribution of z. The expectation of a circular random
variable could only be zero or undefined. Additionally, the pseudo-variance of a circular
random variable could only be zero or undefined.

3.2 Complex mutual information

For complex-valued random variable z, the its mutual information is real-valued. It simply
extends the definition for real-valued random variables:

I(z) = Ez[log
fz(z)∏N

k=1 fzk(zk)
] (18)

The difficulty lies in taking the gradient of a real-valued objective function w.r.t. complex-
valued argument (i.e. W). One way to tackle this is to define complex (partial) differential
operators and define the complex matrix gradient of I(z). See [4] for all the technical details.

3.3 Strong uncorrelating transform (SUT)

As in the real-valued case, it’s better to pre-whitening the dataset so that we could reduce the
optimization set from invertible matrices to orthogonal rotation matrices. Since the second-
order statistics of complex-valued random vectors were determined by both covariance matrix
and pseudo-covariance matrix, we need some extra efforts to whiten the data. It proved in
[4] that any full complex random vector z can be linearly transformed using a nonsingular
square matrix C−1 s.t. s = C−1z has an identity covariance matrix and a diagonal pseudo-
covariance matrix. The diagonal values of the pseudo-covariance matrix are unique and
were named as spectral coefficients. Although strong uncorrelating transform may not be
unique, at least one could be found by the following procedure:
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• Find the usual whitening matrix H = cov(z)−
1
2

• Perform symmetric SVD to the transformed pseudo-covariance matrix: pcov(Hz) =
UΛUT

• C−1 = UHH

3.4 Translate into real-valued ICA

Complex ICA problems could be translated into real-valued ICA based on whether the
spectral coefficients are zero or not. And then all usual optimization algorithms could be
applied to solve the problem.
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