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1 Equivalence to Regularized AR(2) Process

Differential covariance method calculates the covariance between dx(t)
xt

and x(t). More specifi-

cally dx(t)
dt

= x(t+dt)−x(t−dt)
2dt

to mimic the maximum likelihood estimator (MLE) of a regularized
second-order auto-regressive (AR(2)) model.
On one hand, the differential covariance matrix of d-dimensional time series with N time
points could be calculated as Equation 1. xt ∈ R(N−1)×d, xt+dt ∈ R(N−1)×d and xt−dt ∈
R(N−1)×d.

cov(
xt+dt − xt−dt

2dt
, xt) =

1

2dt
[cov(xt+dt, xt)− cov(xt−dt, xt)]

=
1

2dt

1

N
(xt+dt − xt−dt)xTt

(1)

On the other hand, let me first illustrate why differential covariance would look like an AR
model. For a neural network with connection pattern as G and Gaussian noise N , neuron
states x(t) (e.x. firing rate) could be described as Equation 2, which is an AR(2) model with
constrain that at−1 = 1.

dx(t)

dt
= Gx(t) +N

x(t+ 1)− x(t− 1)

2dt
= Gx(t) +N

x(t+ 1) = (2dtG)x(t) + x(t− 1) + dtN

(2)

The G could be estimated using maximum likelihood. More spefically, for a linear regression
model: Y = βX + N . The MLE estimator of β is β̂ = (XTX)−1XTy. Therefore G could
be estimated from x(t + 1) − x(t − 1) = 2dtGx(t) + dtN and Ĝ = (xTt xt)

−1xTt (xt+1 − xt−1).
This estimator is similar to the calculation of differential covariance equation 1.

2 Differential Precision Matrix

To control for the effect of a latent variable z on the correlation of x and y, partial covariance
method is used to regress out the common factors. In the scenario of covariance-based
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method, partial covariance matrix (i.e. precision matrix) is the inverse of a covariance
matrix.
For the differential covariance method, the partial differential covariance ∆p is no longer the
inverse of the differential covariance matrix. Here I derived the differential precision matrix
using linear regression.
First, we donote σij as the covariance between i and j, ∆c,ij as the differential covariance
between i and j. To tease out the effect of a common factor z, we could first solve the
coefficients of a linear regression problem.

wx = arg min
w
E(dx− wz)2

wy = arg min
w
E(y − wz)2

(3)

By finding the minimal of a quadratic form of w , we have wx = σ−1
zz ∆c,xz and wy = σyzσ

−1
zz .

Then we could find the residuals of dx and y as:

drx = dx− wxz
ry = y − wyz

(4)

Then the covariance between drx and ry, i.e. the differential partial covariance between x
and y, could be calculated as:

∆p,xy = cov(drx, ry) = cov[(dx− wxz), (y − wyz)]

= cov(dx, y)− wxcox(z, y)− wycov(dx, z) + wxwycov(z, z)

= ∆c,xy −∆c,xzσ
−1
zz σyz

(5)

Note: differential precision matrix is not symmetric (while the differential covariance matrix
is anti-symmetric) because:

x = wxz + rx, dy = wyz + dry

∆p,yx = cov(rx, dry)

= cov(x− wxz, dy − wyz)

= ∆c,yx −∆c,yzσ
−1
zz σxz

(6)

3 Sparse Latent Assumption/Regularization

4 Blind Deconvolution

See the lab meeting slides or the original paper (G.-R. Wu et al. / Medical Image Analysis
17 (2013) 365–374) for more information.

5 Significance test

It seems that differential covariance based methods works better if thresholding on the
significance level. Then the question remains to be how to determine the significance level
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of each connection. Using the language of p value, the definition of significance would be
the probability of this connectivity value occurring given null hypothesis (i.e. there is no
correlation). There are two main approaches to get the significance level. I termed them as
statistics-based and bootstrap-based method.

5.1 Correlation matrix

Here the correlation refers to Pearson’s correlation, which is the covariance value divided by
the standard deviation of two variables. This correlation is testing for the LINEAR depen-
dence of two random variables. The classical way to test for the significance of Pearson’s
correlation is using t-distribution/normal distribution. Denote the true correlation between
two random variables as ρ and the correlation calculated from N samples as r. When the
null hypothesis is true, the sampling distribution of r is approximated normal given large N
or t-distribution given smaller N with mean equals to zero. The probability of r appearing
in this null distribution is the p value.

5.2 Partial covariance matrix / Precision matrix

5.3 Differential covariance matrix (bootstrap?)
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6 Linear stochastic differential equations

Reference:

• Chapter 4.2, Applied Stochastic Differential Equations, Sarkka

• Chapter 4.1, Lyapunov Matrix Equation in System Stability and Control, Gajic and
Qureshi

• Covariances of Linear Stochastic Differential Equations for Analyzing Computer Net-
works, Hua et al, Tsinghua Science and Technology

System setup:

d~x

dt
= A~x + D

d~β

dt
(7)

where random vector ~x ∈ RN×1 is the state variable and d~β is Brownian motion: d~β
dt
∼

N (0,Q). If we assume D = I and Q = αI (α determines SNR), the system receives inde-
pendent Gaussian white noise, which is the most commonly used case.

Mean and covariance of the random state variable:
Since Equation 7 involves a stochastic component, to solve for the state variable, we need
to evaluate the Ito integral. Mean and covariance of the state variable could be calculated
using Ito formula. Denote E(~x) = ~m and Cov(~x) = E[(~x− ~m)2] = P, then:

d~m

dt
= E(A~x) = A ~m

dP

dt
= AP + PAT + DQDT

(8)

Using linear system dynamics, the mean vector ~m = exp(At) ~m0. The equation of covariance
matrix P is a standard Lyapunov matrix equation. Its solution is given by:

P = exp(At)P0 exp(ATt) +

∫ t

0

exp(A(t− s))DQDT exp(AT(t− s))ds (9)

On the other hand, the Lyapunov matrix equation could also be solved using vectorization
and Kronecker product. Note that (AXB)v = (BT ⊗ A)Xv where subscript v stands for
column vectorization and ⊗ stands for Kronecker product. Then the Lyapunov matrix
equation could be rewritten into a linear differential equation:

dPv

dt
= (I⊗A + A⊗ I)Pv + (D⊗D)Qv (10)

Denote (I⊗A+A⊗ I) = Ã, (D⊗D)Qv = ~c and assume that Ã is invertible, the vectorized
solution is:

Pv = exp(Ãt)(Pv0 + Ã−1~c)− Ã−1~c (11)

If I⊗A + A⊗ I is stable and in the limit of t goes to infinity:

Pv = −(I⊗A + A⊗ I)−1(D⊗D)Qv (12)
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When we have independent white noise in the system:

Pv = −(I⊗A + A⊗ I)−1Iv (13)

where A is the real connection pattern in the original SDE system. This equation serves as
an explicit solution of the covariance matrix in a linear SDE system.

Differential covariance matrix:

For differential covariance matrix defined as ∆cij = cov(d~xi

dt
, ~xj), using the SDE system, it

can be solved as:

∆c = cov(
d~x

dt
, ~x) = Et(

d~x

dt
~xT )− Et(

d~x

dt
)Et(~x)T (14)

Plug in the SDE system equation: d~x
dt

= A~x+ Dd~β
dt

and as before denote Et(~x) = ~m:

Et(
d~x

dt
) = Et(A~x+ D

d~β

dt
) = A~m+ DEt(

d~β

dt
)

Et(
d~x

dt
~xT ) = Et[(A~x+ D

d~β

dt
)~xT ] = AEt(~x~xT ) + DEt(

dβ

dt
~xT )

(15)

Taken together:

∆c = A(Et(~x~xT )− ~m~mT ) + D[Et(
d~β

dt
~xT )− Et(

d~β

dt
)~mT ]

= AP + D[Et(
d~β

dt
~xT )− Et(

d~β

dt
)~mT ]

= AP + DEt[
d~β

dt
(~xT − ~mT )]

= Acov(~x, ~xT ) + Dcov(
~

d~β

dt
,~x)

(16)

Under the assumption that d~β
dt
∼ N (0,Q), i.e. ~β is Brownian motion and independent of

~x, the second terms become zero. Actually, as long as the noise satisfies independence
assumption, the following expression will hold. Then:

∆c = AP (17)

Note, if A is a lower triangle matrix, ∆c could help resolve the confounder problem, at least
proved in a three-neuron case.

Extended differential covariance: Extended differential covariance is defined as ∆L =
∆cP−1. From the above calculation, under independent Brownian noise assumption:

∆L = APP−1 = A (18)
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Forced system: Similarly in a forced stochastic system governed by:

d~x

dt
= A~x+ B~u+ D

d~β

dt
(19)

The expression of differential covariance is:

∆c = Acov(~x, ~x) + Bcov(~u, ~x) + Dcov(
d~β

dt
, ~x) (20)

The issue is that the independence between ~u and ~x cannot be achieved because this is a
forced system.
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7 Numerical methods for derivative computation

It turns out that the specific numerical methods chosen to compute the derivative will affect
the estimation process a lot. Let’s consider a noise-free linear system and its discretization
through Euler integration:
System:

dx

dt
= Ax; xt+1 = xt + Axt ∗ dt (21)

First order derivative: P is the sample covariance matrix of the state variable x

(
dx

dt
)t =

1

dt
(xt+1 − xt) = Axt

∆c =
1

N − 1

N−1∑
t=1

((
dx

dt
)tx

T
t ) =

1

N − 1

N−1∑
t=1

(Axtx
T
t ) = AP

Â = ∆cP−1

(22)

Second order derivative: Similarly, we could iterate the computation of xt+1 and xt to get
the following results. Worth notice is that certain symmetric choice of A (when AP = PA)
may lead to cancellation of the term AP − PAT .

(
dx

dt
)t =

1

2dt
(xt+1 − xt−1)

∆c = 2(AP − PAT )

∆cP−1 = 2(A− PATP−1)

(23)
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8 Differential covariance in the Fourier domain

Still consider the linear dynamic system and given that Fourier transform is a linear opera-
tion:

dx

dt
= Ax

∧
dx
dt

= Ax̂

iωx̂ = Ax̂

(24)

Now let’s consider the hemodynamic effects as convolution by the kernel h(t):

iω

∧

x⊗ h = A

∧

x⊗ h

iωx̂ĥ = Ax̂ĥ

(25)

Define x̂ĥ = Y (w):

iωY (ω) = AY (ω)

iωY (ω)Y (ω)H = AY (ω)Y (ω)H
(26)
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9 Time decaying system equation

For neural dynamics, there’s usually a self-decaying factor in the system equation. For
example, the leaky dynamics in LIF. In this case, we could modify the system equation to
be:

τ
dx

dt
= −x + Wx

τ
dx

dt
= −x + WR(x)

(27)

For the linear case, compared to the original derivation, DDC estimation only differs up to
a scaling factor and the diagonal terms:

∆L = 〈dx
dt
,x〉〈x,x〉−1 =

1

τ
(W − I) (28)

But for the nonlinear system, there’s a bigger influence on the orginal DDCs.

τ〈dx
dt
,x〉 = −〈x,x〉+ W〈R(x),x〉

∆L = 〈dx
dt
,x〉〈x,x〉−1 = −I + W〈R(x),x〉〈x,x〉−1

∆R = 〈dx
dt
,x〉〈R’(x),x〉−1 = −〈x,x〉〈R’(x),x〉−1 + W〈R(x),x〉〈R’(x),x〉−1

(29)

A direct modification is to compute a decaying version:

∆D = (τ〈dx
dt
,x〉+ 〈x,x〉)〈R’(x),x〉−1 (30)

In this case, we have to guess/estimate the self-decaying constant a prior or optimize for this
constant.
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