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1 RNN with constant conduction delay

1.1 Literature review - Senk arxiv 2018

This paper provided mathematical proof of the existence of traveling wave in a recurrently connected neural
network with constant delay. In addition, it also proved the equivalence of rate neural network and spiking
neural network around equilibrium.

1.1.1 General setup

τ
du(x, t)

dt
+ u(x, t) =

∫ ∞
−∞

P (x− y)ψ(u(y, t− d))dy (1)

where u is the firing rate of neuron located at x at time equals to t; τ is the membrane constant; P is the
connection strength; ψ is the non-linear activation function, here ψ(x) = tanh(x); d is a constant delay. The
equilibrium state u0 (stationary across time and space) is given by u0 = κψ(u0) where κ =

∫∞
−∞ P (x− y)dy.

u0 = 0 is certainly an equilibrium state under tanh function.
We could linearize around the equilibrium state u0 and denote a new u = u−u0. Then we could get a linear
ODE with respect to the new u: Given tanh function and u0 = 0, then ψ′(u0) = 1.

τ
du(x, t)

dt
+ u(x, t) =

∫ ∞
−∞

P (x− y)ψ′(u0)u(y, t− d)dy (2)

During the following derivations, there are some important assumptions which don’t apply to the hippocam-
pal anatomy:

• Isotropic and symmetric connectivity, i.e. connection strength is proportional to the difference of
neuron’s location P (r) = wp(r) where p(r) is a probability density function. and P (r) = P (−r).

• Neurons are aligned on a ring-like structure.

• Conduction delay is constant.
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1.1.2 Side Note: One-dimensional wave equation and solutions

One-dimensional wave dynamics u(x, t) is given by a simple partial derivative equation. One way to solve it
is to utilize the eigenmode in frequency uw(x, t) = e−iwtf(x) and the full solution is the superposition of all
eigenmodes.

∂2u

∂t2
= c2

∂2u

∂x2

Plug in eigenmode:
d2

dx2
f(x) = −(

w

c
)2f(x)

f(x) = Ae±ikx, k =
w

c

uw(x, t) = e−iwt(Ae−ikx +Beikx)

(3)

After solving for the eigenmodes in frequency, the full wave equation could be expressed as follows. Therefore,
the spatial frequency of wave, represented by wave number k is essentially determined by the wave equation
coefficient c and temporal frequency w.

u(x, t) =

∫
s(w)uw(x, t)dw

=

∫
s+(w)e−i(kx+wt)dw +

∫
s−(w)ei(kx−wt)dw

(4)

Note that the wave equation doesn’t give a unique solution, which is usually obtained by a given initial
conditions and boundary conditions

1.1.3 One uniform population

According to the eigenmode of the full wave equation (refer to Turing instability analysis and wave equations
for details), plug u(x, t) = eikxeλt, λ = λ(k) into Equation 2. Then we could try to solve the following
equation for λ, which determines the growth mode in time domain: Notice that p̂(0) = 1 given that p(r) is
a probability density function.

(τλ+ 1)eλd =

∫ ∞
−∞

P (x− y)e−ik(x−y)dy

=

∫ ∞
−∞

P (r)e−ikrdr (isotropic and symmetric connection)

= P̂ (k) = wp̂(k)

(5)

We could solve for λ using the properties of Lambert W function.

1.1.4 Two population (excitatory and inhibitory neurons)

Denote u = [uE , uI ]
T = veikxeλt and plug into Equation 2. Note that P̃ (k) is a block matrix, which is

separated by inhibitory connections and excitatory connections while P̂ (k) is a scalar. We could treat P̂ (k)
as effective connection profile because P̂ (k) = (τλ+ 1)eλd.

v(τλ+ 1)eλd = (

∫ ∞
−∞

P (x− y)e−ik(x−y)dy)v

P̂ (k)v = P̃ (k)v

(6)

Next we will derive the effective connection profile in this case. To get a non-trivial solution of v, we want
det(P̃ (k)− P̂ (k)) = 0. Solving this equation for P̂ (k), we could express it in terms of the elements of P̃ (k).
If we reduce the connectivity matrix such that the connection strength only depends on the pre-synaptic
neural type and neural distance. Then we could get the following matrix:

P (r) =

[
wEpE(r) wIpI(r)
wEpE(r) wIpI(r)

]
(7)

Then the expression of P̂ (k) also reduced to P̂ (k) = wE p̂E(k) + wI p̂I(k).
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1.1.5 Linear stability analysis

The stability of the linearized system could be determined by solving λ from (τλ + 1)eλd = P̂ (k). The
equation could be solved using Lambert W function (the inverse function to f(x) = xex). To be more

specific, multiply both sides by d
τ e

d
τ and we get the following equation:

d

τ
(1 + τλ)e

d
τ (1+τλ) = P̂ (k)e

d
τ
d

τ

λb(k) = −1

τ
+

1

d
Wb(P̂ (k)

d

τ
e
d
τ )

Re[Wb(P̂ (k)
d

τ
e
d
τ )] <

d

τ
, if locally stable

(8)

where Wb is a branch of Lambert W function and it has infinite number of branches. Thus, λ has infinite
number of solutions.
The steady state of the system is locally stable if all λ (i.e. λ calculated from all branches of Lambert W
function) has a negative real part. Side note: Lambert W function has its largest real part on principle
branch if it is defined on (−∞,∞). Typically, the principle branch of Lambert W function refers to the
real branch defined on the interval [−e−1,∞). Here we extend the definition to the whole real line by the
complex branch with maximal real part and positive imaginary part on (−∞,−e−1]. Under this definition,
we could only consider the λs (denoted as λ0) on the principle branch of Lambert W function.
Then, we want to find out when Re(λ) becomes positive and the corresponding k∗ during the transition.
Let’s denote the maximum value of P̂ (k) as P̂max and achieved at k = kmax, similarly, the minimum value
of P̂ (k) as P̂min and achieved at k = kmin. We could list the situations as follows:

• For the principle branch defined on [−e−1,∞), λ0 always has real solution. The transition point
happens when P̂max = 1, then by definition, we could have λ0 = 0 and the system becomes destabilized
from current steady state. If the transition happens at k∗ = 0, the population activity is collectively
destabilized and if k∗ > 0, the activity shows spatial oscillations that grow exponentially in time.

• For the negative argument of the principle branch defined on (−∞,−e−1], λ0 comes with complex

conjugate pairs. The transition (i.e. Hopf bifurcation) Re[Wb(P̂ (k) dτ e
d
τ )] = d

τ could be achieved if

P̂min < −1. The analytical expression of the transition point is:

dcrit

τ
=
π − arctan(

√
P̂ crit

2

min − 1)√
P̂ crit

2

min − 1
(9)

If the transition occurs at k∗ = 0, temporal oscillations arise and if the transition occurs at k∗ > 0,
periodic traveling waves arise.

• Questions remained: in the real simulation, what determines the wave number k in the simulation.
Does oscillation only appear at Hopf bifurcation (it seems that as long as d > dcrit, we could have
oscillations/waves in this paper, Fig 3E/F). Possible answer: the wave number k depends on the
dynamics of the system (Check Wikipedia on ’wave equation’ for details). Initial conditions and
boundry effects only affect amplitude and phases. Oscillation only appears at Hopf bifurcation, but

since ˆP crit depends on k, the parameter plot for traveling wave is a region instead of a single line.

1.1.6 Conditions for traveling wave

In general, we want the Hopf bifurcation (Re(λ) = 0, Im(λ) 6= 0) occurs at k 6= 0. (Wave equations have a
family of solutions with continuous speed, i.e. continuous k)
If we denote the maximum value of P̂ (k) as P̂max and achieved at k = kmax, similarly, the minimum value
of P̂ (k) as P̂min and achieved at k = kmin. Then the specific condition for traveling wave in this scenario is
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that:

P̂max < 1

P̂min = P̂ critmin

d = dcrit

kmin > 0

(10)

The critical solutions are solved under Re(λ) = 0 and the negative argument of Lambert W function (P̂min <
−1). The analytical solution is: Note that the critical solution is closely related to τ .

dcrit

τ
=
π − arctan(

√
P̂ crit

2

min − 1)√
P̂ crit

2

min − 1
(11)

1.1.7 Example: Two population with Boxcar connection

The connection probability density for both excitatory and inhibitory could be expressed as: where r is the
physical distance between two neurons.

pE(r) =
1

2RE
Θ(RE − r)

pI(r) =
1

2RI
Θ(RI − r)

(12)

Then the effective connectivity profile is:

P̂ (k) = wE
sin(REk)

REk
+ wI

sin(RIk)

RIk

B̂(k) =
sin(κ)

κ
− η sin(ρκ)

ρκ
(ρ =

RI
RE

, η = − wI
wE

, κ = REk)

(13)

1.1.8 Discretization and Simulation

A network of NE = 4000 and NI = 1000 rate neurons was simulated. The model neurons within each
population are equally spaced on a ring of perimeter L = 1mm. The connection matrix was given by
Equation 7 and 12. The discretized version of neural dynamics was given by:

τ
dui
dt

= −ui +
∑
j

wijψ(uj(t− d)), ψ(x) = tanh(x)

wij =

[
w′EpE(r) w′IpI(r)
w′EpE(r) w′IpI(r)

] (14)

During the simulation, we assume each neuron has a fixed in-degree (fixed number of incoming connections)
KE and KI per source population. This is similar to balance the synaptic input from each source population.
So the coefficients of weights are normalized by the in-degree: w′ = w/K. There are three steady states
associated with equation: u0 =

∑
j wjψ(u0). I think the instability happens near u0 = 0 since ψ′(0) = 1.

Then the key of simulation is to keep the dynamics locally and away from the other two steady states.
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