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Introduction

•Predicting future states is fundamental to the formation of cognitive maps.
Artificial neural networks (ANNs) trained with predictive objectives can develop
spatially organized internal representations [1][2][3].

•The internal representations learned by ANNs can vary widely—even for the same
predictive task—depending on architecture, weight initialization[4], learning
rate, and optimization algorithm.

•This variability underscores the importance of identifying which condition best sup-
ports the emergence of cognitive map.

Task: random exploration in square arena

Not all predictive networks form cognitive maps

Smaller initialization leads to richer training

Highlight

We found that cognitive map-like representations in predictive networks
depend not just on task performance but on the learning trajectory,
shaped by initialization and temporal contexts.

Richer training leads to compressed, structured cognitive maps

Smaller initialization lead to rich training in RNN

Visualization of gradient flow
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Smaller initialization led to low-D representation update

Longer sequence leads to richer training
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