

Reinforcement learning constrained state space modeling of neural decisions

Yusi Chen¹, Shijia Liu ⁴, Jeremiah Cohen ³, Eric Shea Brown ^{1,2}

UNIVERSITY of WASHINGTON

¹Computational Neuroscience Center, University of Washington; ² Applied Mathematics, University of Washington; ³ Allen Institute for Neural Dynamics; ⁴ Harvard Medical School

Abstract

- State space modeling (SSM) enables latent variable inference and system parameter estimation.
- We proposed reinforcement learning constrained SSM [1] to model animal licking.
- Enables the inference of internal belief of animals and data driven discovery of learning rules.
- Improves upon previous methods by harnessing within trial details (e.g. response time, lick number etc.)

Motivation: modeling within trial belief dynamics

Basic assumptions:

- Latent variables decay along time
- Licking as a point process

Modeling licking as a point process

- Definition:
- -N(t): the number of events up until t;
- $-s(t) = \{s_0, s_1, ..., s_{N(t)}\}$: event timing set;
- $-\lambda(t|s(t)) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} P(N(t+\Delta t) N(t) = 1|s(t))$: event rate.
- ullet When N(T)=n, the probability density function of spike time: $p(s_1,s_2,...,s_n)=n$ $\prod_{k=1}^{n} \lambda(s_k | s_1, ..., s_{k-1}) \exp[-\int_0^T \lambda(u | s(u)) du]$
- ullet Inhomogenous Markov process (IMI) [2] only considers the influence of most recent event $s_*(t)$ $-\lambda(t|s(t))$ simplify to $\lambda(t,t-s_*(t))$.
- -Homogeneous Poisson process: $\lambda(t, t s_*(t)) = \lambda$, $\mathbb{E}[N[0, T)] = T\lambda$, Variance, Fano factor, ITI;
- -Inhomogeneous Poisson process: $\lambda(t, t s_*(t)) = \lambda(t)$, $\mathbb{E}[N[0, T)] = \int_0^T d\xi \lambda(\xi)$;
- -Inhomogeneous Poisson process with refractory period: $\lambda(t, t s_*(t)) = \lambda_1(t)\delta(t s_*(t) > \tau)$

Reinforcement learning constrained state-space modeling

Model assumption	Forward modeling	Constrained state space modeling
Rescorla-Wagner	$Q_{t+1} = \zeta Q_t + \alpha C_t (R_t - Q_t)$	$Q_{t+1} \sim \mathcal{N}(\zeta Q_t + \alpha C_t(R_t - Q_t), V)$
	$P(C_t) = \sigma(Q_t)$	$C_t \sim Bernoulli(\sigma(Q_t))$
+ choice kernel	$Q_{t+1} = \zeta Q_t + \alpha C_t (R_t - Q_t)$	$L_t = [Q_t, K_t]^T$
	$K_{t+1} = \zeta K_t + \alpha C_t (C_t - K_t)$	$\left L_{t+1} \sim \mathcal{N}\left(\begin{bmatrix} \zeta - \alpha C_t & 0 \\ 0 & \zeta - \alpha C_t \end{bmatrix} L_t + \begin{bmatrix} \alpha C_t R_t \\ \alpha C_t C_t \end{bmatrix}, V \right) \right $
	$P(C_t) = \sigma(\beta_1 Q_t + \beta_2 K_t)$	$C_t \sim Bernoulli(m{eta}^T L_t)$

 Q_t : internal belief; K_t : choice kernel; R_t : reward; $C_t \in \{0, 1\}$: decision

Highlight

We applied theory-constrained state space modeling to infer with-in trial belief states from animal behavior and estimate system parameters, advancing the discovery of novel learning theories.

Implementation ullet Latent inference: Given $R_{0:t}, C_{0:t+1}$, infer latent Q_{t+1} such that $P(Q_{t+1}|R_{0:t},C_{0:t+1})$ is maximized. Estimated parameter $\alpha^*, \zeta^* = \operatorname{argmax} P(C_{t+1}|R_{0:t}, C_{0:t+1}; \alpha, \zeta)$ • Implementation: DYNAMAX, approximate Bernoulli pdf through a mixture of Gaussians.

Extensions

- Formulate loss function as IMI: $N[s,t) \sim \mathsf{Poiss}(n,\theta)$
- ullet Hierarchical modeling of trial-level parameters: $L(\mu,\sigma)=\mathbb{E}_{\theta\sim\mathcal{N}(\mu,\sigma^2)}\mathsf{MAP}(\theta)$

References

- 1. Linderman, S. W. et al. Using computational theory to constrain statistical models of neural data. Current opinion in neurobiology **46**, 14–24 (2017).
- 2. Kass, R. E. et al. A spike-train probability model. Neural computation 13, 1713–1720 (2001).

Acknowledgements

We'd like to thank Swartz foundation, UW-CNC and Allen Institute for Neural Dynamics.