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Identify novel learning rules

Abstract nghllght

e State space modeling (SSM) enables latent vari-
able inference and system parameter estimation.

e Linear relationship: E(Q;,1) = aQ; + bCy + cR;

— Contains choice kernel model

We applied theory-constrained state space modeling to infer with-in

: : : : : Bilinear relationship: E = aQ; +0C R+ cCiQ +dR
W 1 reinf v learn: trial belief states from animal behavior and estimate system parameters, * Bilinear relationship: B(Qr1) = aQi +bCh [ + cCiQy + ATy
¢ VV€ proposed remnrorcement learning con- ! _ e d : ) _ eor — Contains the value decision model
strained SSM [1] to model animal licking. advancing the discovery of novel learning theories. o Generative dynamics: E(Qy.1) = Qs + aCy(Ry — Q)
e Enables the inference of internal belief of an- — Ground truth relationship: a =(, b=, c = —«
imals and data driven discovery of learning
rules. Implementation . . ’,
e Improves upon previous methods by harnessing _0s- o . ®
. . . . - . 0.4 - x‘.” 0.4 - R
within trial details (e.g. response time, lick e Latent inference: Given Ry, Copey, infer latent Qp.y 00 - | 2] o8
number etc.) such that P(Q:1|Ro+, Co.i11) is maximized. 0.01+" | | 0-0-;" | |
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e Estimated parameter 7400 - ¢ Q
o, C* = argmax P(Cyi1| Ry, Copiq; a0, C) i_):) - > .
. . . o . . . Impl tation:  DYNAMAX imate B Ili : 00 24
Motivation: modeling within trial belief dynamics 2 MPBSIESIEEELD ) CLHpRSMIEES SR 7300 - % 8] e e
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‘model based lnference\ Basic assumptions: Model o True 8

e | atent variables decay along time
Behavioral latents (e.g. belief) e Licking as a point process

‘ \ ~ Ci(R; — V
model based inference e Latent variables get updated per lick Q1 ~ N(CQe + aCi(ly — Q). V)

Neural activities 0=0.98, (=0.94, Rate=0.48
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Application to real data and challenges
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e Nonrewarded trials | = Model fit
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lteration

e Choice kernel with
trial specific initial

belief

Modeling licking as a point process

---- Reward Loss
---- No reward

e Definition:
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— N(t): the number of events up until ¢;

—_

—— Recovered
— True

Estimated

—5(t) = {50, 51, .-, Sn@r) }: event timing set;
— A(t]s(t)) = limap—0 i P(N(t + At) — N(t) = 1|s(t)): event rate.
eWhen N(T') = n, the probability density function of spike time: p(sq,s9,...,8,) =
[T Alsilsis s sio) expl— fi Auls(u))dul
e Inhomogenous Markov process (IMI) [2] only considers the influence of most recent event s, (t) Distinguish between models of latent dynamics
— A(t|s(t)) simplify to A(t,t — s,(1)). o Value decision: Q1 ~ N (CQ; + aCy(Ry — Qy), V)
Homogeneous Poisson process: A(t,t — s.(t)) = A, E|[N|0,T)| = T\, Variance, Fano factor, ITI; o Choice kernel: K, 1 ~ N(CK; + a(Cy — K;), V)
nhomogeneous Poisson process: A(t,t — s.(t)) = A(t), E[N|0,T)] = fOT dEN(E); o Lingering reward: Qi1 ~ N (CQ; + aCy(Ry — Q,), V), Rivy = nRy + 1,
nhomogeneous Poisson process with refractory period: A\(t,t — s.(t)) = A (£)0(t — si(t) > 7) e Decaying learning rate: ;11 ~ N (CQ; + a,Cy(Ry — @), V), a1 = Ny

Non'reward ed LiCkS: rate=0 44 Linear Regression (R? = 0.39) Linear Regression (R* = 0.10)
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Extensions
e Formulate loss function as IMI: N|s,t) ~ Poiss(n, )

Reinforcement learning constrained state-space modeling

e Hierarchical modeling of trial-level parameters: L(u, o) = EQNN(M702)MAP<6)

Value decision - Value decision

Model assumption Forward modeling Constrained state space modeling
Rescorla-Wagner | Q11 = (Q¢ + aCy(R; — Q) Qi1 ~ N(CQi+ aCi(Ry — Qy), V)
P(Cy) = o(Qy) Cy ~ Bernoulli(o(Q;))

+ choice kernel Qt—H = CQt + CYCLL(Rt — Qt) Lt — [Qt, Kt]T

Kiy1 = (K + aCi(Cr — Ky) Lia ~ N {C O&Ct ¢ —OaCJ Ly + {
P(Cy) = o(81Q: + B2 KY) C; ~ Bernoulli(3' L;)
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()¢ internal belief; K;: choice kernel; R;: reward; C; € {0,1}: decision




