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1 ONLY decision modeling

1.1 Forward Q learning

From Bari et al. [1], we could write down the classical forward Q learning updates with
forgetting for each trial k:
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where C l is binary and indicates whether chooses left or not. Sigmoid function has a β
parameter determining the slope. Note that for most cases, the update of Q happens for
each trial. We could also write down similar update equations for each time step:
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(2)

where g(t1) is a causal filter after a cue happened at t0. In this set of equations, t1 and t2
don’t need to be close to each other and Q gets updated at t1+1 where Ct1 = 1. Otherwise,
Q is decaying. Qt+1 is linear in Qt given Ct and Rt. So let’s abbreviate the update equations
for Q:

Qt2+1 = A(Ct2)Qt2 +B(Ct2 , Rt2) (3)

In summary, we got a Markovian computation graph shown in Fig. 1.1.
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Figure 1: Computation graph at t + 1. Read nodes are information available for inference
of Qt+1

1.2 Q learning constrained state space modeling (SSM)

Based on dynamics provided in Eq. 2, we could write down a hidden markov (HMM) chain
with Q as latent variables, R as input and C as observations. The subtle difference from
classical HMM is that Ct is used to determine the dynamics of Qt+1. The formal
problem formulation is: given reward R0:t, choices C l

0:t+1 and Cr
0:t+1, infer latent Ql

t+1 and
Qr

t+1 such that P (Qt+1|R0:t, C0:t+1) is maximized.

Based on Bayes rule and Markov assumptions, we could write down this posterior as:

P (Qt+1|R0:t, C0:t+1)

=
1

η
P (Qt+1, Ct+1|R0:t, C0:t)

=
1

η
P (Ct+1|Qt+1, R0:t, C0:t)P (Qt+1|R0:t, C0:t)

=
1

η
P (Ct+1|Qt+1, R0:t, C0:t)

∫
P (Qt+1|Qt, R0:t, C0:t)P (Qt|R0:t, C0:t)dQt

=
1

η
Ph(Ct+1|Qt+1)

∫
Pf (Qt+1|Qt, Ct, Rt)P (Qt|R0:t−1, C0:t)dQt

(4)

This is a recursive evaluation so we only need to worry about the observation model Ph and
the motion model Pf .

For the observation model Ph:

Ph(C
l
t+1|Qt+1) ∼ Bernoulli(Sigmoid(QT

t+1D)gt) (5)

If we denote D = [1,−1]T and drop gt for now, then

P (C l
t+1|Qt+1) = C l

t+1[1− Sigmoid(QT
t+1D)] + (1− C l

t+1)Sigmoid(QT
t+1D) (6)
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For the motion model Pf , let’s add uncorrelated Gaussian noise with diagonal variance V to
Eq.3. We could have a probabilistic formulation:

Pf (Qt+1|Qt, Ct, Rt) ∼ Normal(A(Ct)Qt +B(Ct, Rt), V ) (7)

The closed form expression of posterior might be very messy as Gaussian and Bernoulli are
not closed under multiplications. We may need sampling methods to approximate these
distributions. The upshot is that we could calculate the Q posterior recursively.

1.3 Joint inference of latent and parameters

So in this specfic Q learning paradigm, we have latent variable Q and parameters ζ, α, β left
for inference from data. The steps are summarized as below:

• For fixed values of ζ, α, β, the posterior distribution of Qt+1 can be found via the
Bayesian filtering through the recursive calculation of Eq.4 (Forward filtering).

• For fixed values of ζ, α, β, the marginal likelihood of the observed data Ct+1 can be
efficiently computed from Eq.4 by integrating out the Qt+1. (Data likelihood com-
putation)

• For fixed posterior over Qt+1, we can infer ζ, α, β that maximize the likelihood of
observing Ct+1. (MLE parameter estimation)

1.4 Inference of Latents

1.4.1 Forward filtering

Denote θ = {α, β, ζ}, forward filtering computes the probabilities of latent states given
information up to current time t as detailed in Eq.4.

P (Qt|R0:t−1, C0:t, θ) ∝ Ph(Ct|Qt)

∫
Pf (Qt|Qt−1, Ct−1, Rt−1)P (Qt−1|R0:t−2, C0:t−1)dQt−1 (8)

1.4.2 Backward smoothing?

Backward smoothing compute latent state probability in an offline manner given all available
information up till T , i.e. P (Qt|R0:T , C0:T , θ). Calculation could be derived in by induction.
Assume we know At+1 = P (Qt+1|R0:T , C0:T , θ), we want to compute At = P (Qt|R0:T , C0:T , θ).

At =

∫
P (Qt|Qt+1, R0:T , C0:T )At+1dQt+1

=

∫
P (Qt|Qt+1, R0:t, C0:t+1)At+1dQt+1

=

∫
P (Qt, Qt+1|R0:t, C0:t+1)

P (Qt+1|R0:t, C0:t+1)
At+1dQt+1

(9)
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The second line uses the Markovian assumption. The make it more obvious, one could
reverse P (Qt|Qt+1) using the Bayes rule and check the conditional dependence of the three
involved terms one by one.

We could compute P (Qt+1|R0:t, C0:t+1) and P (Qt, Qt+1|R0:t, C0:t+1) using the forward
filtering process. Then induction could be performed to backward smooth the probability.

1.4.3 General Gaussian filtering

1.5 Parameter Estimation

There are multiple different algorithms to infer the set of parameters that maximize the
likelihood of observing the data. In the special scenario of making decisions, assuming
independent observations per time step, data likelihood could be expressed as product of
multiple Poisson or Bernoulli process. Most algorithms would suffer from the problem of
being stuck in local minimum because the convexity of the loss function is hard to prove (?).
Maybe in some special functional, we could assume convexity.

1.5.1 Stochastic Gradient Descent (SGD) of a Loss Function

.

1.5.2 Expectation Maximization (EM)

1.5.3 State space identification (SSID) initialized EM

SSID for linear dynamical systems (LDS): Ho-Kalman method [2].
Generative model:

x1 ∼ N (0,Π)

xt+1|xt ∼ N (Axt, Q)

zt = Cxt + d

yt|zt ∼ N (zt, R)

(10)

Assume stationary, Π = limt→∞Cov[xt]. Define a ’future-past Hankel matrix’ H of observa-
tions as:

H := Cov[y+t , y
−
t ], y+t :=

 yt
...

yt+k−1

 , y−t :=

yt−1
...

yt−k

 (11)

Under stationary assumptions, the Hankel matrix could be expressed as:

H =
(
C⊤ (CA)⊤ · · · (CAk−1)⊤

)⊤ ·
(
AΠC⊤ · · · AkΠC⊤) (12)

Performing SVD on the Hankel matrix, we could estimate values for A and C.

SSID for general LDS [3].
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• For general LDS, the Gaussian observation model is replaced by more general obser-
vation models such as a Bernoulli or Poisson observation. Each observation entry is
independent conditioned on zt.

• Assume the moments of zt and yt are linked as: E(yt|zt) = f(zt) and V (yt|zt) = g(zt).
The basic is that we could apply SSID to zt, which has normal distribution and link y
to z though their moments.

• The key is to compute future-past Hankel matrix of z from observations of y.

SSID for Bernoulli LDS.

1.6 Relationship to other models

1.6.1 Drift Diffusion models (DDM)and RL-DDM

Main reference: mathematical analysis of DDM [4] and Reinforcement learning DDM [5].

In this basic RLDD model, the non-decision time Ter, starting point z, and boundary
separation a are trial independent free parameters, as in the ordinary DDM. The drift rate
v(t) varies from trial to trial as a function of the difference in the expected rewards, multiplied
by a scaling parameter m, which can capture differences in the ability to use knowledge of
the reward probabilities:

v(t) = [Vupper(t)− Vlower(t)]×m (13)

1.6.2 Poisson GLM for spike trains

Main reference: Poisson GLM used by Pillow et al. [6] and likelihood of point process [7].

Probability description of exact event times in a point process. Let N(t) represents
the number of events up until t and their spike time is described by s(t) = {s0, s1, .., sN(t)},
the probability density of the spike train during [0, T ] is given by combining independent
Poisson process with infinitesimal time intervals and inhomogeneous rate λ:

p(s1, s2, ..., sn) =
n∏

k=1

λ(sk|s1, .., sk−1) exp−
∫ T

0

λ(u|s(u))du (14)

where N(T ) = n and

λ(t|s(t)) = lim
∆t→0

1

∆t
P (N(t+∆t)−N(t) = 1|s(t)) (15)

The general form of event rate given above is dependent on the entire event history from
the beginning. A tractable simplification is to only consider the influence of the most recent
event s∗. It could take the form of:

λ(t|s(t)) = λ(t, t− s∗(t)) (16)
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• If λ(t, t− s∗(t)) = λ(t), this is inhomogenous Poisson process;

• If λ(t, t − s∗(t)) = λ(t − s∗(t)), this is a renewal process where inter-event intervals
follow the same probability distribution;

• If λ(t, t−s∗(t)) = λ1(t)λ2(t−s∗(t)), we could use this to model refractory period. This
is the basis for discarding time points in refractory period.

Poisson GLM. Conditioned intensity (i.e. spike rate) is given by λ(t|s(t)) = exp (k ∗ x+ h ∗ s+ µ)
where x is stimulus and k, h are filters to be estimated. Temporal filter could be consisted
of a basis of raised cosine bumps of the form bj(t) = 0.5 cos(a log[t+ c]− ϕj) + 0.5.

1.6.3 Loss function for Poisson RL.

In the simple case of stop task with Q learning, the loss function could be written as a
parameter of α and ζ given that we know the lick choice and rewards.

In the discrete time case, lick time up to T was denoted by s(T ) = {s1, s2, .., sN}, assume
that:

Qt+1 = ζQt + αCt(Rt −Qt)

Ct =
N∑
i=1

δsi(t)
(17)

The loss function, similar to Eq. 14, could be written as:

L =
N∑
i=1

logQ(si)−
T∑
t=1

Qt (18)

Value of Q could be written in a recursive way.

Q0 = 1

Qsk+1 = Qsk(ζ − α) + αRsk

Qsk+t = Qsk+1ζ
t−1, t ≤ sk+1 − sk

(19)

If we plug in the expression into the loss function, we could obtain L parameterized by α
and ζ. With simplifications on the expression of Rt, we might be able to obtain a closed
form solution.
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1.7 Case study: when to stop

Figure 2: When to stop task setup. Credit to Dr. Shijia Liu (Sabatini lab).

Given cue gt, reward Rt, binary lick decision Ct, there’re two different ways to estimate
animal’s belief of licking Qt: 1) Forward value iteration given a specific RL model (e.g.
TD, choice kernel etc [8]). The important thing is that the chosen RL model needs to be
applied within each trial ; 2) Simultaneous latent variable and model parameter inference
in constrained SSM. The forward approach is simpler but results depend on model choice
and hyper-parameter choice while the second approach allows model comparison and hyper-
parameter estimation.

1.7.1 Forward Q learning

The continuous Q update in this context could be written as (dropping the influence of g
for simplicity):

Qt2+1 = Ct2 [ζQt2 + α(Rt2 −Qt2)] + (1− Ct2)(ζQt2)

P (Ct1 = 1) = Sigmoid(βQt1)
(20)

Q is initialized to be big due to enforced licking. If the fourth detection lick is rewarded,
reward prediction error (RPE) is small, Q remain unchanged, except for slow decaying. If the
detection lick is not rewarded, R−Q is very negative, Q value will be drastically decreased
at the next time step.
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1.7.2 Constrained SSM

Input includes cue gt, reward Rt; Observation includes the binary lick choice Ct; Latent
variable Qt represents the subjective value of licking. System dynamics could be described
as below:

Qt+1|Ct, Qt, Rt ∼ Normal(A(Ct)Qt +B(Ct, Rt), V )

Ct|Qt ∼ Bernoulli(Sigmoid(βQt))
(21)

1.7.3 With refractory period

Since it is not possible to lick at each time step, an artificial refractory period (τ) is enforced
in the generation of licks. Rt is generated from Ct and is supplied to the algorithm as another
control signal.

Ct|Qt ∼ Bernoulli(Sigmoid(βQt)Rt)

Rt = 1− sgn(
t−1∑

i=t−τ

Ci)
(22)

1.8 Case study: dynamic foraging
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