
Kalman Filter based SLAM and Visual Tracking

Yusi Chen

October 9, 2021

Contents

1 Introduction 1

2 Problem Formulation 2
2.1 SLAM and Extended Kalman filter (EKF) 2
2.2 Visual mapping . 2
2.3 Location prediction and update . 3

3 Technical Approach 3
3.1 Location prediction and motion model . 3
3.2 Map update and observation model . 4
3.3 Location update . 4
3.4 Camera reverse projection . 5

4 Results and Discussion 5
4.1 Prediction-only pose . 5
4.2 Visual mapping . 7
4.3 Visual-Inertial SLAM . 7

4.3.1 Reliability of prediction and update 10
4.3.2 Map initialization . 11

1 Introduction

Visual-inertial SLAM is a problem where only visual (camera) measurements and inertial
measurements (IMU) are used to do simultaneously localization and mapping (SLAM). In
this project, we are provided with synchronized measurements from an IMU and a stereo
camera. Then we want to use a Extended Kalman Filter (EKF) to do mapping and local-
ization.

1

SLAM: Kalman Filter Yusi Chen

2 Problem Formulation

2.1 SLAM and Extended Kalman filter (EKF)

SLAM is such an estimation problem that given external output u0:T and observation z0:T ,
we want to estimate the best current robot state xT and external map mT . Under Markov as-
sumption, we could expression the joint pdf as Equation ?? where ph and pf are observation
model and motion model respectively. To maximize the data likelihood given parameters
(MLE), we aim to solve the optimization problem of maxx0:T ,m log p(x0:T ,m, z0:T , u0:T−1).
According to Equation 1, we want to find x0:T and m that maximize ph(zt|xt,m) and
pf (xt|xt−1, ut−1) at every step t under a given observation and motion model.

p(x0:T ,m, z0:T , u0:T−1) = p0|0(x0,m)
T∏
t=0

ph(zt|xt,m)
T∏
t=1

pf (xt|xt−1, ut−1)

log p(x0:T ,m, z0:T , u0:T−1) =
T∑
t=0

log ph(zt|xt,m) +
T∑
t=1

log pf (xt|xt−1, ut−1)

(1)

For a Bayesian filter (extended Kalman filter in this case), we keep track of pt|t(xt) :=
p(xt+1|z0:t, u0,t−1) so that we could find the best xt and m. Under Markov assumption and
Bayes rule, we could keep track of it by Equation ??. In addition, this equation could be
decomposed into prediction (the integral term) and update (the whole term). So we could
compute pt+1|t(x) and pt+1|t+1(x) iteratively to do that.

pt+1|t+1(xt+1) := p(xt+1|z0:t+1, u0:t)

=
ph(zt+1|xt+1)

p(zt+1|z0:t, u0:t)

∫
pf (xt+1|xt, ut)pt|t(xt)dxt

Prediction : pt+1|t(x) :=

∫
pf (xt+1|xt, ut)pt|t(xt)dxt

Update : pt+1|t+1(x) :=
ph(zt+1|xt+1)

p(zt+1|z0:t, u0:t)
pt+1|t(x)

(2)

Kalman filter is a Bayes filter with Gaussian prior, linear motion and observation model
and Gaussian independent noise. Therefore, all state variables in a Kalman filter could
be represented as Gaussian distribution. Extended Kalman filter could deal with more
general, nonlinear motion model and observation model. EKF linearizes motion model and
observation model around previous state mean and then forces the posterior distribution to
be Gaussian distribution.

2.2 Visual mapping

For the mapping problem, we have the following assumptions:

• The inverse IMU pose Tt =w T
−1
I,t ∈ SE(3) over time is known from localization steps.

• Data association πt : {1, ...,M} → {1, ..., Nt} stipulating which landmarks were ob-
served at each time t is known or provided by an external algorithm

2

SLAM: Kalman Filter Yusi Chen

• The landmarks are static, i.e. it is not necessary to consider a motion model or a
prediction step

Under the assumption of EKF, all state variables are represented as Gaussian distribution.
Therefore, the distribution of map m given previous observations z0:t is m|z0:t−1 ∼ N (µt,Σt)
with µt ∈ R4×M and Σt ∈ R3M×3M . Then given a new observation zt, our goal is to compute
the updated distribution of m|z0:t ∼ N (µt+1,Σt+1).

2.3 Location prediction and update

In the location-only problem, we have the following assumptions:

• Landmark coordinates in the world frame m ∈ R4×M are known;

• Data association πt : {1, ...,M} → {1, ..., Nt} stipulating which landmarks were ob-
served at each time t is known or provided by an external algorithm.

In this part, we are given the IMU measurements u0:T with ut := [vt, ωt]
T and visual feature

observations z0:T . Then we want to estimate the inverse IMU pose Tt :=W T−1I,t ∈ SE(3)
over time.

3 Technical Approach

3.1 Location prediction and motion model

Given prior distribution on the inverse IMU pose Tt|z0:t, u0:t−1 ∼ N (µt|t,Σt|t) with µt|t ∈
SE(3) and Σt|t ∈ R6×6, and IMU measurement ut = [vt, ωt]

T of linear and angular velocities,
we now need to update µt+1|t and Σt+1|t given the motion model shown in Equation 3:

Tt+1 = exp((τ(−ut + wt))ˆ)Tt, (3)

where wt ∼ N (0,W) is the model noise ∈ R6 and τ is the time discretization.

To linearize the motion model, let’s separate the pose into mean pose µt+1|t and a per-
turbation ξ. Then the prediction equations are given as follows:

µt+1|t = exp(−τ ût)µt|t (4)

ξt+1|t = exp(−τuft)ξt|t + τwt, (5)

where uft =

[
ω̂t v̂t
0 ω̂t

]
∈ R6×6

The EKF prediction step is then given as:

µt+1|t = exp(−τ ût)µt|t

Σt+1|t = E[ξt+1|tξ
T
t+1|t]

= exp(−τuft)Σt|t exp(−τuft)T + τ 2W

(6)

3

SLAM: Kalman Filter Yusi Chen

3.2 Map update and observation model

Given the prior mapping distribution m|z0:t ∼ N (µt,Σt) with µt ∈ R4×M and Σt ∈ R3M×3M ,
we now need to update the mean µt+1 and covariance Σt+1 assuming the observation model:

zt,j = h(Tt,mj) + vt = Mπ(OTITtmj) + vt (7)

where j is the j-th observed feature, Tt is the current estimate of the IMU pose, π(q) = 1
q3
q ∈

R4 is the projection function, and vt ∼ N (0, V) ∈ R4 is the observation noise.

To do the update step in Kalman filter, we first need the innovation term, which is defined
as follows:

∆zt,j = zt,j −Mπ(OTITtµt,j) ∈ R4×1, (8)

where zt,j is the pixel coordinates of all the current feature observations j and if we stack
∆zt,j together in a column vector, we could have ∆zt ∈ R4Nt×1.
Then to linearize observation model, we want to compute the Jacobian matrix Ht ∈ R4Nt×3M

as ∂zt,j/∂m. We could use the first-order Taylor series to derive this:

zt,j = Mπ(OTITt(µt,j +Dδt,j))

≈Mπ(OTITtµt,j) +M
dπ

dq
(OTITtµt,j)OTITtDδt,j

Hi,j = M
dπ

dq
(OTITtµt,j)OTITtD ∈ R4×3

(9)

where D = [I3, 0]T ∈ R4×3, and δt,j denotes a small perturbation of position of the
lankmark j. Then we could stack Hi,j on the diagonal to get a big Jacobian matrix Ht ∈
R4Nt×3M . Ht is a block diagonal matrix.
With the above terms defined, we can then perform the EKF update step as follows:

Kt = ΣtH
T
t (HtΣtH

T
t + I ⊗ V)−1

µt+1 = µt +DKt∆z

Σt+1 = (I −KtHt)Σt

(10)

where I ⊗ V defines a block diagonal matrix with Nt subblock V ’s on the diagonal.

3.3 Location update

Given the result from the prediction step Tt+1|z0:t, u0:t+1 ∼ N (µt+1|t,Σt+1|t) with µt+1|t ∈
SE(3) and Σt+1|t ∈ R6×6, we now need to update the mean and covariance of the pose
assuming the observation model:

zt+1,j = h(Tt+1,mj) + vt+1 = Mπ(OTITt+1mj) + vt+1 (11)

Since in this step, we want to linearize the observation model in terms of Tt+1 instead of m.
Therefore, the Jacobian matrix Ht ∈ R4Nt×6 = ∂zt+1,j/∂T . We used the first-order Taylor

4

SLAM: Kalman Filter Yusi Chen

series to derive this:

zt+1,j = Mπ(OTI exp(ξ̂t+1|t+1)µt+1|tmj)

≈Mπ(OTI(I + ξ̂t+1|t+1)µt+1|tmj)

= Mπ(OTIµt+1|tmj +O TI(µt+1|tmj)
�ξt+1|t+1)

≈Mπ(OTIµt+1|tmj) +M
dπ

dq
(OTIµt+1|tmj)OTI(µt+1|tmj)

�ξt+1|t+1

Hj = M
dπ

dq
(OTIµt+1|tmj)OTI(µt+1|tmj)

� ∈ R4×6

(12)

where ξt+1|t+1 ∈ R6×1 denotes a small pose perturbation of IMU, and the (·)� maps a vector
r ∈ R4 to r� = ([s, λ]T)� = [[λI,−ŝ], [0, 0]] ∈ R4×6. If we stack Hj vertically, we could
obtain the big Jacobian matrix Ht ∈ R4Nt×6.

With the above terms defined, we can then perform the EKF update step as follows:

Kt+1|t = Σt+1|tH
T
t+1|t(Ht+1|tΣt+1|tH

T
t+1|t + I ⊗ V)−1

µt+1|t+1 = exp((Kt+1|t∆z)ˆ)µt+1|t

Σt+1|t+1 = (I −Kt+1|tHt+1|t)Σt+1|t

(13)

where ∆z is defined in Equation 8, I ⊗ V defines a block diagonal matrix with Nt subblock
V ’s on the diagonal.

3.4 Camera reverse projection

In this problem, we are given features coordinates in the camera frame: z = [uL, vL, uR, vR]T

and want to find its corresponding world frame m. According to the stereo camera model,
m could be calculated as follows:

m = T−1t [Xo, Yo, Zo, 1]T

z = M
1

Zo

[Xo, Yo, Zo, 1]T

Zo =
fsub

uL − uR

(14)

where M is the intrinsic matrix of the stereo camera and it is non-invertible. So in practice,
I explicitly calculated Xo and Yo based on fsu and fsv.

4 Results and Discussion

4.1 Prediction-only pose

In this part, I only used IMU readings to impose motion model on the robot. There’s no
update step involved here. As one may observed from Figure 1, 2 and 3, the prediction-only
trajectory is already very reasonable. For example, in dataset 27, the pose trajectory went
back to origin and in dataset 20, the pose trajectory shows exactly two driving lanes. This
may indicate that the IMU readings are accurate and reliable.

5

SLAM: Kalman Filter Yusi Chen

Figure 1: [Dataset20] Prediction-only trajectory in the world frame. Meter as unit

Figure 2: [Dataset27] Prediction-only trajectory in the world frame.

6

SLAM: Kalman Filter Yusi Chen

Figure 3: [Dataset42] Prediction-only trajectory in the world frame.

4.2 Visual mapping

In this part, we are assuming that the prediction-only trajectory is correct and use the above
trajectory to calculate the feature coordinates in the world frame. I first initialized the map
based on the pose where one given feature first appears as shown in Figure 4. Then I updated
the feature coordinates based on Equation 10. Results are shown in Figure 5, 6 and 7

4.3 Visual-Inertial SLAM

To update location and map simultaneously, we treat both map m ∼ N (µ1,Σ1) and pose
T ∼ N (µ2,Σ2) as state variable ∼ N (µ,Σ) where µ ∈ R(3M+6)×1 and Σ ∈ R(3M+6)×(3M+6).
Since during the calculation of µ1 and µ2, the Jacobian matrix with respect to m and T
component don’t interfere with each other. Therefore, we could still update µ based on
Equation 10 and 13. However, in order to calculate Σ, which also account for the cross-
corrletion between m and T , we need to compute a bigger Jacobian matrix. The calculation
is shown as follows:

H = [H1;H2] ∈ R4Nt×(3M+6)

K = ΣHT (HΣHT + I ⊗ V)−1 ∈ R(3M+6)×4Nt

Σt+1 = (I −KH)Σ

(15)

where H1 and H2 are the Jacobian matrix computed in Equation 10 and 13.

7

SLAM: Kalman Filter Yusi Chen

Figure 4: [Dataset20] Initial map of tracked features based on prediction-only trajectory.
Each dot represented one tracked feature from the stereo camera

8

SLAM: Kalman Filter Yusi Chen

Figure 5: [Dataset20] Visual mapping based on prediction-only trajectory. Red line repre-
sented pose trajectory and blue dots are features.

Figure 6: [Dataset27] Visual mapping based on prediction-only trajectory

9

SLAM: Kalman Filter Yusi Chen

Figure 7: [Dataset42] Visual mapping based on prediction-only trajectory

The preliminary results of visual-inertial SLAM are shown in Figure 8. Surprisingly, the
results is worse than prediction-only trajectory. I tried various noise levels (w and v) and
Figure 8 is the best result among all the conditions I have tried.
After inspecting the video, I found several non-static features and some unstable features
which could jump between frames. So I adopted the algorithm to account for the reliability
of IMU and camera measurements.

4.3.1 Reliability of prediction and update

In my first attempt, I filtered out the non-static and unstable features. To be more specific,
for one given feature, if its coordinate distance between two time frames are larger than 2
meters (dataset20, Approximately 72km/h). The algorithm is going to discard this observa-
tion. After feature filtering, the results are shown in Figure 9. There’s improvement on the
estimation, but it’s still not as good as the prediction-only results.
Then I tried to constrain the location update level. I set a boundary on how much the
location update step could modify mean pose. If the updated pose is too far away from the
predicted pose, I forced the updated pose to be equal to the predicted pose. In dataset20,
about one quarter of updated pose were reset as the predicted pose. Covariance matrix cal-
culation remains the same. In this way, the SLAM was modified further toward prediction
step. The results are shown in Figure 10, 11 and 12. For dataset 20, there’s slight improve-
ment compared to Figure 9 but still not as good as the prediction-only pose. For dataset 42,

10

SLAM: Kalman Filter Yusi Chen

Figure 8: [Dataset20] Preliminary SLAM

there are two turning points which are not observed from the prediction-only trajectory. This
may corresponding to the two act of changing lanes in the video. Maybe further parameter
fine-tuning or improvement on the feature-tracking algorithm could improve the results.

4.3.2 Map initialization

If I initialized the map based on prediction-only trajectory, as I did in Figure 4, the SLAM
results are substantially improved (Figure 13). But we need to be cautious about this
initialization because again it is biased to the prediction measurements.

11

SLAM: Kalman Filter Yusi Chen

Figure 9: [Dataset20] Feature-filtered SLAM

Figure 10: [Dataset20] Location update constrained SLAM

12

SLAM: Kalman Filter Yusi Chen

Figure 11: [Dataset27] Location update constrained SLAM

Figure 12: [Dataset42] Location update constrained SLAM

13

SLAM: Kalman Filter Yusi Chen

Figure 13: [Dataset 20] SLAM with initialization biased towards prediction

14

