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1 Introduction

This project aims to implement simultaneous localization and mapping (SLAM) using odom-
etry, inertial, 2-D laser range and RGBD measurements from a differential-drive robot. In
addition to that, RGBD information was also provided to perform texture mapping of the
map (the ground floor in this case).
SLAM was tackled using particle filter, which involves two main steps: prediction and up-
date.
Texture mapping was performed using a RGBD camera model and coordinate transforma-
tion.
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2 Problem Formulation

2.1 SLAM and Bayesian filter

SLAM is such an estimation problem that given external output u0:T and observation z0:T ,
we want to estimate the best current robot state xT and external map mT . Under Markov as-
sumption, we could expression the joint pdf as Equation ?? where ph and pf are observation
model and motion model respectively. To maximize the data likelihood given parameters
(MLE), we aim to solve the optimization problem of maxx0:T ,m log p(x0:T ,m, z0:T , u0:T−1).
According to Equation 1, we want to find x0:T and m that maximize ph(zt|xt,m) and
pf (xt|xt−1, ut−1) at every step t under a given observation and motion model.

p(x0:T ,m, z0:T , u0:T−1) = p0|0(x0,m)
T∏
t=0

ph(zt|xt,m)
T∏
t=1

pf (xt|xt−1, ut−1)

log p(x0:T ,m, z0:T , u0:T−1) =
T∑
t=0

log ph(zt|xt,m) +
T∑
t=1

log pf (xt|xt−1, ut−1)

(1)

For a Bayesian filter (particle filter in this case), we keep track of pt|t(xt) := p(xt+1|z0:t, u0,t−1)
so that we could find the best xt and m. Under Markov assumption and Bayes rule, we
could keep track of it by Equation ??. In addition, this equation could be decomposed into
prediction (the integral term) and update (the whole term). So we could compute pt+1|t(x)
and pt+1|t+1(x) iteratively to do that.

pt+1|t+1(xt+1) := p(xt+1|z0:t+1, u0:t)

=
ph(zt+1|xt+1)

p(zt+1|z0:t, u0:t)

∫
pf (xt+1|xt, ut)pt|t(xt)dxt

Prediction : pt+1|t(x) :=

∫
pf (xt+1|xt, ut)pt|t(xt)dxt

Update : pt+1|t+1(x) :=
ph(zt+1|xt+1)

p(zt+1|z0:t, u0:t)
pt+1|t(x)

(2)

In this project, we used particle filter where the distributions are represented by the sum-
mation of delta functions. Let’s say we have N particles with weight α(k) and delta function
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δ(µ(k)).

pt+1|t(xt+1) =

∫
pf (xt+1|xt, ut)pt|t(d)ds =

∫
pf

N∑
k=1

α
(k)
t|t δ(s, µ

(k)
t|t )ds

=
N∑
k=1

α
(k)
t|t pf (xt+1|µ(k)

t|t , ut), (Bootstrap approximation) =
N∑
k=1

α
(k)
t+1|tδ(xt+1, µ

(k)
t+1|t)

pt+1|t+1(xt+1) =
p(zt+1|xt+1)p(xt+1)

p(zt+1)
=
ph(zt+1|xt+1)

∑N
k=1 α

(k)
t+1|tδ(xt+1, µ

(k)
t+1|t)∫

ph(zt+1|s)
∑N

k=1 α
(k)
t+1|tδ(s, µ

(k)
t+1|t)ds

=
N∑
k=1

ph(zt+1|µ(k)
t+1|t)α

(k)
t+1|t∑N

k=1 ph(zt+1|µ(k)
t+1|t)α

(k)
t+1|t

δ(xt+1, µ
(k)
t+1|t)

(3)

2.2 Texture mapping

Texture mapping is to obtain a more detailed representation of m given information cap-
tured by an RGBD camera located on the robot. The key is to transform projected pixel
coordinates (u, v) into world frame coordinates (Xw, Yw, Zw) based on rotation model and
camera intrinsic parameters.
For a RGBD camera used in this project, it has two rigidly-connected horizontal cameras.
For a point m = (Xw, Yw, Zw) with pixel coordinates (uL, vL) and (uR, vR) for left camera
and right camera, the transformation could be described as Equation ?? according to a
stereo camera model where (Xo, Yo, Zo) is the coordinates in optical plane; Roc is the camera
orientation in optical plane, Rwc is camera in world frame and p is the camera pose in world
frame. uLvL

d

 =

fsu 0 cu 0
0 fsv cv 0
0 0 0 fsub

 1

Zo


Xo

Yo
Zo
1


Xo

Yo
Zo

 = RocR
T
wc(m− p)

(4)

3 Technical Approach

3.1 Setup

3.1.1 Time stamp alignment

Since we have multiple measurements, including encoder (40Hz), lidar (40Hz), IMU (100Hz)
and camera (20Hz), it’s important to align them and identify the right paired measurements.
In this project, I used encoder measurements as the standard time train and all dt equals to
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encoder time interval. For lidar and camera, I adopted the closest measurements while for
IMU data, I averaged the measurements between two encoder time stamps.

3.1.2 Body frame

For convenience, I chose the lidar position as my robot center. x axis is to the front, y
axis to the left and z axis towards the sky. Based on lidar setup, left turn is related to
positive yaw angle change. For SLAM problem, which doesn’t involve z axis, this center is
almost equivalent to front wheel center. For texture mapping, the disparity camera pose
relative to robot is prc = (0.09, 0.005,−0.154) and angles (roll, pitch, yaw) relative to robot
is (0, 0.36, 0.021)rad. World frame origin was set at the robot position when t = 0.

3.1.3 Grid map

To simplify map representation, I used an occupancy grid map to store the map. World
frame origin is at the center of the grid. The grid resolution is 0.1 meters/grid and the grid
ranges from (-55,55) meters both x and y axis. mi = 1 means the grid is occupied and
mi = 0 means the grid is free.

3.2 Differential-drive robot motion prediction

The movement of this robot was modeled as differential-drive wheels. Let the robot state
µt = (xt, yt, θt) and external force ut = (vt, wt) then the robot movement could be described
by Equation ??.

θt+1 = θt + wtdt

xt+1 = xt + vt

∫ t+1

t

sin(θs)ds = xt +
v

w
(sin(θt+1)− sin(θt))

yt+1 = yt + vt

∫ t+1

t

sin(θs)ds = yt −
v

w
(cos(θt+1)− cos(θt))

(5)

For particle filter, pt+1|t(x) is equivalent to apply motion model to each particle and retain
their weight α.

3.3 Map correlation-based update and stratified resampling

In this project, I used laser correlation model as the observation model. In Equation ??, m
is the current map, yk is the map from particle k. Map is inherited from the best particle
at the previous step. In practice, small vibrations were added to yk to counter observation
noise.

corr(yk,m) :=
∑
i

1(mi = yi)

ph(zt|µt,k,m) = exp(corr(yk,m)−max
k

corr(yk,m)) ∈ (0, 1)

αt+1 = αtph(zt|µt,k,m) with normalization

(6)
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Because we are using a grid map, in practice, an accumulated log odds ratio map λ(mi|z0:t, x0:t)
was kept during iterations. It was updated according Equation ??

λ(mi|z0:t, x0:t) := log o(mi|z0:t, x0:t)
= λ(mi|z0:t−1, x0:t−1) + log gh(zt|mi, xt)

gh(1|mi, xt) =
ph(zt = 1|mi = 1, xt)

ph(zt = 1|mi = 0, xt)
= 4, gh(0|mi, xt)

=
1

4

(7)

A grid map m could be retrieved by sampling from a binomial distribution where pi =
1− 1

1+exp(λi,t)
. To avoid particle depletion, which is defined as Neff < N/2 where Neff = 1∑

α2
k
,

stratified importance was adopted.

3.4 Camera reverse projection

In this problem, we are given uL, vL, d and want to find its world frame pixel m. For a
pixel z = [uL, vL] in the disparity camera, m could be calculated as Equation ?? where Zo
is the depth which could be calculated from the equations given and Rwc = RwrRrc and
pwc = pwr + prc. Rrc and prc could be found in the setup session and Rwr and pwr are two
varying matrices which corresponding to the weighted robot states from all particles. The
RGB color of point z could also be calculated from the equations given.

m = RwcR
T
oc(K

−1zZo) + pwc (8)

Since we are only coloring the ground, I applied height threshold = 0.3 meters to m. Only
low-height pixels were added to the grid map. And all pixels were averaged to form the color
of certain grid.

4 Results and Discussion

4.1 Single particle prediction

In this part, I only used one particle to do prediction-only localization. That is to say, the
robot trace totally depends on encoder and IMU readings. Results are shown in Fig. 4.1,
4.1 and 4.1.

4.2 Update results and log-odds ratio map

For the whole process of update, please refer to the video attached in the programming
assignment. Here, I’m only showing the final results of SLAM.
First of all, the traces are more accurate in the single particle prediction results. For example,
in dataset 20, from the video, we know that the robot came back to its starting place at the
end. In Figure 4.1, the starting and ending point is about 5 meters apart while in Figure
4.2, the starting point and ending point is located at the same place.
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Figure 1: Single particle prediction-only trace for dataset20: Showing the physcal location
of the particle and the unit is meter. Time is color-coded in the rainbow color, from blue to
red

Figure 2: Single particle prediction-only trace for dataset21: Showing the physcal location
of the particle and the unit is meter. Time is color-coded in the rainbow color, from blue to
red
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Figure 3: Single particle prediction-only trace for dataset23: Showing the physcal location
of the particle and the unit is meter. Time is color-coded in the rainbow color, from blue to
red

On the other hand, the SLAM results are not perfect because there are obviously duplicated
structure in the accumulated odds ratio, which is due to inaccuracy of localization. For
example, the corner part in dataset 21 (Figure 4.2) and the vertical corridor in dataset 23
(Figure 4.2). I tried to tune the noise and vibration level in the model, but I haven’t found
perfect parameters for dataset 21 and dataset 23.

4.3 Texture mapping

For texture mapping, the trace is slightly distorted but we could still identify some features
or colors of the environment. In the middle panel of Figure 4.3, right part is gray stairs;
upper left is a white floored room with many colored tools. In the middle panel of Figure
4.3, the right part is gray stairs; there are two slopes and some dark areas in the left vertical
corridor.

4.4 Noise and particle dispersion

It is very hard to choose the appropriate motion noise so that the filter could balance between
flexibility and randomness. I investigated the different scenario of noise and the results are
shown below. Let’s say both linear and angular velocity have Gaussian noise and variance
is σv and σw.

• Stationary v.s. non-stationary noise: for stationary noise, σ is invariant throughout
the time while for non-stationary noise, σ is a time-varying variable. Fig 4.4 shows the
results of dataset20 given stationary noise (about 10% for linear velocity and about
3% for angular velocity). Fig4.4 shows the results of the same dataset given almost

7



SLAM: Particle Filter Yusi Chen

Figure 4: SLAM results for dataset20 (N=10). left panel: accumulated log-odds ratio;
middle panel: estimated robot trace in the map grid; right panel: particle physical position
in world frame

Figure 5: SLAM results for dataset21 (N=50). left panel: accumulated log-odds ratio;
middle panel: estimated robot trace in the map grid; right panel: particle physical position
in world frame
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Figure 6: SLAM results for dataset23 (N=100). left panel: accumulated log-odds ratio;
middle panel: estimated robot trace in the map grid; right panel: particle physical position
in world frame

Figure 7: Texture mapping results for dataset20 (based on Figure 4.2 results). left panel:
accumulated log-odds ratio; middle panel: texture mapping grid; right panel: accumulated
number of pixels in each grid
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Figure 8: Texture mapping results for dataset21 (based on Figure 4.2 results). left panel:
accumulated log-odds ratio; middle panel: texture mapping grid; right panel: accumulated
number of pixels in each grid

similar percentage of non-stationary noise. Clearly, non-stationary noise is better in
this case.

• Big Noise: big noise could be beneficial because it successfully handle the slope problem
in dataset21 Comparing Figure 4.4 (big noise) and Figure 4.2, the big noise version
has a better estimation of the lower vertical corridor but it failed to recover the right
horrizontal corridor.
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Figure 9: SLAM results for dataset20 (N=10)under non-stationary noise. left panel: accu-
mulated log-odds ratio; middle panel: estimated robot trace in the map grid; right panel:
particle physical position in world frame

Figure 10: SLAM results for dataset20 (N=10) under stationary noise. left panel: accumu-
lated log-odds ratio; right panel: estimated robot trace in the map grid
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Figure 11: SLAM results for dataset21 (N=50)under big non-stationary noise (variance is
about 20% for linear velocity and 10% for angular velocity). left panel: accumulated log-odds
ratio; middle panel: estimated robot trace in the map grid; right panel: particle physical
position in world frame
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